12,389 research outputs found

    Cosmological CPT Violation, Baryon/Leptogenesis and CMB Polarization

    Get PDF
    In this paper we study the cosmological CPT-violation and its implications in baryo/leptogenesis and CMB polarization. We propose specifically a variant of the models of gravitational leptogenesis. By performing a global analysis with the Markov Chain Monte Carlo (MCMC) method, we find the current CMB polarization observations from the three-year WMAP (WMAP3) and the 2003 flight of BOOMERANG (B03) data provide a weak evidence for our model. However to verify and especially exclude this type of mechanism for baryo/leptogenesis with cosmological CPT-violation, the future measurements on CMB polarization from PLANCK and CMBpol are necessary.Comment: The version appears in PL

    New feature of low pTp_{T} charm quark hadronization in pppp collisions at s=7\sqrt{s}=7 TeV

    Full text link
    Treating the light-flavor constituent quarks and antiquarks that can well describe the data of light-flavor hadrons in pppp collisions at s=7\sqrt{s}=7 TeV as the underlying source of chromatically neutralizing the charm quarks of low transverse momenta (pTp_{T}), we show that the experimental data of pTp_{T} spectra of single-charm hadrons D0,+D^{0,+}, D∗+D^{*+} Ds+D_{s}^{+}, Λc+\Lambda_{c}^{+} and Ξc0\Xi_{c}^{0} at mid-rapidity in the low pTp_{T} range (2≲pT≲72\lesssim p_{T}\lesssim7 GeV/cc) in pppp collisions at s=7\sqrt{s}=7 TeV can be well understood by the equal-velocity combination of perturbatively-created charm quarks and those light-flavor constituent quarks and antiquarks. This suggests a possible new scenario of low pTp_{T} charm quark hadronization, in contrast to the traditional fragmentation mechanism, in pppp collisions at LHC energies. This is also another support for the exhibition of the effective constituent quark degrees of freedom for the small parton system created in pppp collisions at LHC energies.Comment: 7 pages, 5 figure

    B(s)→SB_{(s)}\to S transitions in the light cone sum rules with the chiral current

    Full text link
    B(s)B_{(s)} semi-leptonic decays to the light scalar meson, B(s)→Slνˉl,Sllˉ  (l=e,μ,τ)B_{(s)}\to S l\bar{\nu}_l, S l \bar{l}\,\,(l=e,\mu,\tau), are investigated in the QCD light-cone sum rules (LCSR) with chiral current correlator. Having little knowledge of ingredients of the scalar mesons, we confine ourself to the two quark picture for them and work with the two possible Scenarios. The resulting sum rules for the form factors receive no contributions from the twist-3 distribution amplitudes (DA's), in comparison with the calculation of the conventional LCSR approach where the twist-3 parts play usually an important role. We specify the range of the squared momentum transfer q2q^2, in which the operator product expansion (OPE) for the correlators remains valid approximately. It is found that the form factors satisfy a relation consistent with the prediction of soft collinear effective theory (SCET). In the effective range we investigate behaviors of the form factors and differential decay widthes and compare our calculations with the observations from other approaches. The present findings can be beneficial to experimentally identify physical properties of the scalar mesons.Comment: 22 pages,16 figure
    • …
    corecore